eIF4E Is an Important Determinant of Adhesion and Pseudohyphal Growth of the Yeast S. cerevisiae
نویسندگان
چکیده
eIF4E, the cytoplasmatic cap-binding protein, is required for efficient cap-dependent translation. We have studied the influence of mutations that alter the activity and/or expression level of eIF4E on haploid and diploid cells in the yeast S. cerevisiae. Temperature-sensitive eIF4E mutants with reduced levels of expression and reduced cap-binding affinity clearly show a loss in haploid adhesion and diploid pseudohyphenation upon starvation for nitrogen. Some of these mutations affect the interaction of the cap-structure of mRNAs with the cap-binding groove of eIF4E. The observed reduction in adhesive and pseudohyphenating properties is less evident for an eIF4E mutant that shows reduced interaction with p20 (an eIF4E-binding protein) or for a p20-knockout mutant. Loss of adhesive and pseudohyphenating properties was not only observed for eIF4E mutants but also for knockout mutants of components of eIF4F such as eIF4B and eIF4G1. We conclude from these experiments that mutations that affect components of the eIF4F-complex loose properties such as adhesion and pseudohyphal differentiation, most likely due to less effective translation of required mRNAs for such processes.
منابع مشابه
Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملGenetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression.
The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by implementing a morphogenetic program wherein cells elongate and interconnect, forming pseudohyphal filaments. This growth transition has been studied extensively as a model signaling system with similarity to processes of hyphal development that are linked with virulence in related fungal pathogens...
متن کاملEffects of Saccharomyces cerevisiae on survival rate and growth performance of Convict Cichlid (Amatitlania nigrofasciata)
Using probiotics can control pathogens by a variety of mechanisms. Probiotics can promote growth performance and have, therefore, become increasingly important in the aquaculture industry. Convict Cichlid belongs to the family of Cichlidae and is known for its rapid development in laboratory conditions and is suitable for behavioral examinations. The aim of this study was to evaluate the effect...
متن کاملMultiple TORC1-Associated Proteins Regulate Nitrogen Starvation-Dependent Cellular Differentiation in Saccharomyces cerevisiae
BACKGROUND The budding yeast Saccharomyces cerevisiae undergoes differentiation into filamentous-like forms and invades the growth medium as a foraging response to nutrient and environmental stresses. These developmental responses are under the downstream control of effectors regulated by the cAMP/PKA and MAPK pathways. However, the upstream sensors and signals that induce filamentous growth th...
متن کاملComparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits
Saccharomyces cerevisiae strains of clinical and nonclinical origin were compared by pulse field gel electrophoresis. Complete separation between strains of clinical origin and food strains by their chromosome length polymorphism was not obtained even though there was a tendency for the clinical and food strains to cluster separately. All the investigated strains, except for one food strain, we...
متن کامل